Поиск в словарях
Искать во всех

Большая советская энциклопедия - определитель

 

Определитель

определитель
Определитель, детерминант, особого рода математическое выражение, встречающееся в различных областях математики. Пусть дана матрица порядка n, т. е. квадратная таблица, составленная из п2 элементов (чисел, функций и т. п.): (1) (каждый элемент матрицы снабжен двумя индексами: первый указывает номер строки, второй — номер столбца, на пересечении которых находится этот элемент). Определителем матрицы (1) называется многочлен, каждый член которого является произведением n элементов матрицы (1), причем из каждой строки и каждого столбца матрицы в произведение входит лишь один сомножитель, т. е. многочлен вида a ± a1aa2b...ang. (2) В этой формуле a, b, ..., g есть произвольная перестановка чисел 1, 2, ..., n. Перед членом берется знак +, если перестановка a, b, ..., g четная, и знак – , если эта перестановка нечетная. Перестановку называют четной, если в ней содержится четное число нарушений порядка (или инверсий), т. е. случаев, когда большее число стоит впереди меньшего, и нечетной – в противоположном случае; так, например, перестановка 51243 – нечетная, т. к. в ней имеется 5 инверсий 51, 52, 54, 53, 43. Суммирование производится по всем перестановкам a, b, ..., g чисел 1, 2, ..., n. Число различных перестановок n символов равно n! = 1·2·3·...·n; поэтому О. содержит n! членов, из которых 1/2n! берется со знаком + и 1/2n! со знаком –. Число n называется порядком О. О., составленный из элементов матрицы (1), записывают в виде: (3) (или, сокращенно, в виде |aik|). Для О. 2-го и 3-го порядков имеем формулы: = a11a22 – a12a21, = a11a22a33 + a12a23a31 + a13a21a32 – a11a23a32 – a12a21a33 – a13a22a31. О. 2-го и 3-го порядков допускают простое геометрическое истолкование: равен площади параллелограмма, построенного на векторах a1 = (x1, y1) и a2 = (х2.у2), а равен объему параллелепипеда, построенного на векторах a1 = (x1, y1, z1), a2 = (x2, у2, z2) и а3 = (х3, y3, z3) (системы координат предполагаются прямоугольными). Теория О. возникла в связи с задачей решения систем алгебраических уравнений 1-й степени (линейные уравнения). В наиболее важном случае, когда число уравнений равно числу неизвестных, такая система может быть записана в виде: (4) Эта система имеет одно определенное решение, если О. |aik|, составленный из коэффициентов при неизвестных, не равен нулю; тогда неизвестное xm (m = 1, 2, ..., n) равно дроби, у которой в знаменателе стоит О.|aik|, а в числителе — О., получаемый из |aik| заменой элементов m-го столбца (т. е. коэффициентов при хт) числами b1, b2, ..., bn. Так, в случае системы двух уравнений с двумя неизвестными решение дается формулами ; . Если b1 = b2 = ..., = bn = 0, то систему (4) называется однородной системой линейных уравнений. Однородная система имеет отличные от нуля решения, только если |aik| = 0. Связь теории О. с теорией линейных уравнений позволила применить теорию О. к решению большого числа задач аналитической геометрии. Многие формулы аналитической геометрии удобно записывать при помощи О.; например, уравнение плоскости, проходящей через точки с координатами (x1, y1, z1), (x2, y2, z2), (х3, y3, z3), может быть записано в виде: = 0. О. обладают рядом важных свойств, которые, в частности, облегчают их вычисление. Простейшие из этих свойств следующие: 1) O. не изменяется, если в нем строки и столбцы поменять местами: = ; 2) О. меняет знак, если в нем поменять местами две строки (или два столбца); так, например: = –; 3) О. равен нулю, если в нем элементы двух строк (или двух столбцов) соответственно пропорциональны; так, например: = 0; 4) общий множитель всех элементов строки (или столбца) О. можно вынести за знак О.; так, например: = k ; 5) если каждый элемент какого-нибудь столбца (строки) О. есть сумма двух слагаемых, то О. равен сумме двух О., причем в одном из них соответствующий столбец (строка) состоит из первых слагаемых, а в другом — из вторых слагаемых, остальные же столбцы (строки) — те же, что и в данном О.; так, например: = + ; 6) О. не изменяется, если к элементам одной строки (столбца) прибавить элементы другой строки (другого столбца), умноженные на произвольный множитель; так, например: = ; 7) О. может быть разложен по элементам какой-либо строки или какого-либо столбца. Разложение О. (3) по элементам i-й строки имеет следующий вид: = ai1A i1 + ai2Ai2 + ...+ainAin. Коэффициент Aik, стоящий при элементе aik в этом разложении, называется алгебраическим дополнением элемента aik. Алгебраическое дополнение может быть вычислено по формуле: Aik = (–1)i + kDik, где Dik — минор (подопределитель, субдетерминант), дополнительный к элементу aik, то есть О. порядка n-1, получающийся из данного О. посредством вычеркивания строки и столбца, на пересечении которых находится элемент aik. Например, разложение О. 3-го порядка по элементам второго столбца имеет следующий вид: = –a12 + a22 – a32. Посредством разложения по элементам строки или столбца вычисление О. n-го порядка приводится к вычислению n определителей (n - 1)-го порядка. Так, вычисление О. 5-го порядка приводится к вычислению пяти О. 4-го порядка; вычисление каждого из этих О. 4-го порядка можно, в свою очередь, привести к вычислению четырех О. 3-го порядка (формула для вычисления О. 3-го порядка приведена выше). Однако, за исключением простейших случаев, этот метод вычисления О. практически применим лишь для О. сравнительно небольших порядков. Для вычисления О. большого порядка разработаны различные, практически более удобные методы (для вычисления О. n-го порядка приходится выполнять примерно n3 арифметических операций). Отметим еще правило умножения двух О. n-го порядка: произведение двух О. n-го порядка может быть представлено в виде О. того же n-го порядка, в котором элемент, принадлежащий i-й строке и k-му столбцу, получается, если каждый элемент i-й строки первого множителя умножить на соответствующий элемент k-го столбца второго множителя и все эти произведения сложить; иными словами, произведение О. двух матриц равно О. произведения этих матриц. В математическом анализе О. систематически используются после работ немецкого математика К. Якоби (2-я четверть 19 в.), исследовавшего О., элементы которых являются не числами, а функциями одного или нескольких переменных. Из таких О. наибольший интерес представляет определитель Якоби (якобиан) Определитель Якоби равен коэффициенту искажения объемов при переходе от неременных х1, x2, ..., хп к переменным y1 = f1(x1, ..., xn), y2 = f2(x1, ..., xn), …………………. yn = fn(x1, ..., xn). Тождественное равенство в некоторой области этого О. нулю является необходимым и достаточным условием зависимости функций f1(x1, ..., xn), f2(x1, ..., xn), ..., fn(x1, ..., xn). Во 2-й половине 19 в. возникла теория О. бесконечного порядка. Бесконечными О. называются выражения вида: (5) (односторонний бесконечный О.) и (двусторонний бесконечный О.). Бесконечный О. (5) есть предел, к которому стремится О. при бесконечном возрастании числа n. Если этот предел существует, то О. (5) называется сходящимся, в противном случае — расходящимся. Исследование двустороннего бесконечного О. иногда можно привести к исследованию некоторого одностороннего бесконечного О. Теория О. конечного порядка создана в основном во 2-й половине 18 в. и 1-й половине 19 в. (работами швейцарского математика Г. Крамера, французских математиков А. Вандермонда, П. Лапласа, О. Коши, немецких математиков К. Гаусса и К. Якоби). Термин «О.» («детерминант») принадлежит К. Гауссу, современное обозначение — английскому математику А. Кэли. Лит. см. при статьях Линейная алгебра, Матрица.
Рейтинг статьи:
Комментарии:

См. в других словарях

1.
  (детерминант), составленное по определенному правилу из n2 чисел математическое выражение, применяемое при решении и исследовании систем алгебраических уравнений 1-й степени. Число n называется порядком определителя. Так, определитель 2-го порядка, составленный из четырех чисел a1, b1, a2, b2, обозначается: и равен a1b2-b1a2. ...
Большой энциклопедический словарь
2.
  или детерминант, - в математике запись чисел в виде квадратной таблицы, в соответствие которой ставится другое число ("значение" определителя). Очень часто под понятием "определитель" имеют в виду как значение определителя, так и форму его записи. Определители позволяют удобно записывать сложные выражения, возникающие, например, при решении линейных уравнений в аналитической геометрии и в математическом анализе. Открытие определителей приписывают японскому математику С.Кова (1683) и, независимо, Г.Лейбницу (1693). Современная теория восходит к работам Ж.Бине, О.Коши и К.Якоби в начале 19 в. Простейший определитель состоит из 4 чисел, называемых элементами и расположенных в виде 2-х строк и 2-х столбцов. О таком определителе говорят, что он 2-го порядка. Например, таков определитель значение которого равно 2?5 - 3?1 (т.е. 10 - 3 или 7). В общем случае определитель 2-го порядка принято записывать в виде а его значение равно a1b2 - a2b1, где a и b - числа или функции. Определитель 3-го порядка состоит из 9 элементов, расположенных в виде 3-х строк и 3-х столбцов. В общем случае определитель n-го порядка состоит из n2 элементов, и обычно его записывают как...
Энциклопедия Кольера

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины